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CENTRALLY SYMMETRIC CONVEX BODIES 
AND DISTRIBUTIONS 

BY 

WOLFGANG WEIL 

ABSTRACT 

To each certtrally symmetric convex body is assigned a distribution on the 
sphere. As applications, geometric formulas and a characterization of zonoids 
are obtained. 

Introduction 

In the theory of convex bodies (nonvoid, compact ,  convex sets) in Euclidean 

d-space Ed(d >= 2), one often is interested in bodies which are " composed"  of 

certain "s imple"  ones. For the purpose of our  investigations, "composi t ion"  

means vector addition and the "s imple"  bodies are the one-dimensional  

compact ,  convex sets, the line segments. 

Finite sums of line segments are convex polytopes which are characterized by 

a strong property of symmetry.  They, as well as all their faces (equivalently 

two-dimensional faces), are centrally symmetric.  Such polytopes, now called 

zonotopes,  were noticed first, for d = 3, by the Russian crystallographer Fedorov 

in 1885. The support  function He of a zonotope P is the sum of the support  

functions of the line segments s,, whose sum is P. If the origin is the centre of 

symmetry of P, we can assume the same for si. Because I(x, u) I, u E E d (where 

(. ,  .) is the scalar product) is the support  function of the line segment with 

endpoints  x and - x ,  we may write 

i= l  

with unit vectors xl, • • ", x, and p~ > 0, i = 1, • •., n. 

This equation suggests the study of convex bodies K, whose support  functions 

are representable  by 
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fo I<x,u>lp(dx),u 
with a (nonnegative) BoWel measure p on the unit sphere f~ in E d. These bodies 

and their translates are called zonoids. They could be considered as continuous 

positive combinations of line segments, and the set of zonoids is exactly the 

closure of the set of zonotopes in the usual Hausdortt metric. The study of 

zonotopes and zonoids involves a lot of interesting problems; a survey of 

references can be found in [9]. 

In his book "Kreis und Kugel" [2, pp. 154--155], Blaschke mentioned a wider 

class of convex bodies. He showed that any positively homogeneous, even 

function : on E 3, satisfying some smoothness condition, can be written in the 

form 

[(u)= f,, I<x,u)lo(dx),u 3, 
with a suitable, signed Borel measure p on •. Moreover, if p is assumed to be 

even, then it is uniquely determined by f. We call the translates of convex bodies, 

whose support functions have this representation, generalized zonoids; they are 

dense in the set of all centrally symmetric bodies. Schneider [5], [6] made 

Blaschke's smoothness condition precise for arbitrary d and gave examples of 

centrally symmetric convex bodies which are not generalized zonoids, and of 

generalized zonoids which are not zonoids. 
The correspondence between K and p for a dense subset engenders the 

feeling that there is a correspondence between general, centrally symmetric 

convex bodies and certain mathematical objects on IL The sequence 

measure of finite support ~ measure ~ signed measure--* ? 

suggests that these "objects" are distributions. The existence of such a corres- 

pondence between centrally symmetric convex bodies and distributions on f~ is 

not difficult to derive from Blaschke's result. This is not only of a purely 

theoretical interest. For we have pointed out in [9] the connection between the 

signed measures p and the geometric properties of the generalized zonoids; 

hence it may be of interest, whether these results can be transformed to 

arbitrary, centrally symmetric, convex bodies. It is the aim of this paper to study 

the indicated connection between centrally symmetric, convex bodies and 

distributions on I~ and to prove some geometric formulas. 

As a consequence, we get, by a simple argument from distribution theory, a 

characterization of zonoids by inequalities of mixed volumes which by itself may 

be a justification of these investigations. 
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The setup of the paper is as follows. Section 1 contains a summary of needed 

notations and results concerning convex bodies. In Section 2 we collect the 

notations and properties of distributions on ll. In Section 3 we assign to each 

convex body, centrally symmetric with respect to the origin, an even distribution 

on 1~. Then we study the domain of definition of these distributions, and we find 

an upper bound for their order. Section 4 contains the formulas for the support 

function, the mixed volumes, and the mixed surface area measures. The last 

section deals with our criterion for zonoids. 

1. Convex bodies 

In the sequel, we list the most usual notations and facts about convex bodies, 

as found in a concentrated form in Bonnesen and Fenchel [3] or in Busemann 

[4], especially the part about surface area measures. 

Let E d (d _-> 2) be the d-dimensional Euclidean space. Elements x, y E E d are 

d-tuples x = (xl, . . . , x d ) ,  y = ( y l , . . . , y d )  with real numbers x~,y '. The scalar 

product is ( x , y ) = x ' y ' + . . . + x d y  ~ and the norm Ilxll=<x,x> ''2. B =  

{x ~ E" III x II =< 1} is the unit ball and l l  = {x E E ~ ] I1 x II = 1} the unit sphere. We 

supply l l  with the o--algebra ~ of Borel subsets. A measure p on (II, ~ )  is, in 

our sense, a nonnegative, finite, or-additive set function on 9~. A signed measure 

is a difference of measures. A (.signed) measure p is even if p ( A ) =  

p({x I -  x E A}) for all A E ~.  Let u/,/(fl) be the set of all even, signed measures 

on (ll, 9~) and .//+(l-l) = {p E ./~(f~) [ p _-> 0}. 

A convex body K is a nonvoid, compact, convex subset of E d. K is a polytope 

if it is the convex hull of finitely many points. K is centrally symmetric if there is 

a point Xo E K, the centre, such that y E K implies 2 x o -  y E K for all y E E d. 

Let Y/" be the set of all convex bodies K C E  ~ which are centrally symmetric and 

have the origin as centre. In what follows, we are mostly concerned with convex 

bodies which are elements of Y{. The (vector) sum of two convex bodies K, L is 

defined as 

K + L  ={x + y ] x ~ K ,  y E L } .  

The multiple aK of K, where a => 0, is defined as 

aK = {ax Ix E K}. 

For convex bodies K , L  and a,/3_->0, a K + / 3 L  is a convex body, and if 

K, L E Yt, then aK +/3L E Yr. Thus, Y{ is a convex cone. The Hausdorff metric d 

is defined by 
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d ( K , L ) =  inf{e > 0 I K  CL + eB, L C K +  eB}. 

Y{ is closed in the topology generated by d. The support function HK of a convex 

body K is 

HK(u) = sup(x, u), u E E d. 
x ~ K  

HK is continuous, positively homogeneous, and convex. K E Y{ if and only if HK 

is even, that is Hj¢(-  x) = HK(x) for all x E E d. If (~(ll) denotes the Banach 

space of even, continuous functions f on 1) with the norm 

]]fll = supl f(x)l ,  
xEf~ 

then the restrictions of even support functions to lI form a closed convex 

cone ~(1)) in ~(ll). By the correspondence between convex bodies and support 

functions, 5g and ~( l l )  are isomorphic (in the algebraical and topological sense). 

The volume V ( K )  of a convex body K is the Lebesgue measure of K. 

Approximating a convex body K by polytopes, one can prove that the volume of 

a linear combination of convex bodies alK~ + ..  • + ot,Kn, ai >= O, is a polynomial 

in a~, i = 1,- . . ,  n, where the coefficient of a , , x . . ,  x a,~ is symmetric and 

depends only on K~,. . . ,  K~ : 

V(a~K~ * " "  * a .K , )  = ~, a~, × ... x a~,V(K~,. . . ,  K~,). 
il = l , .  . . , n  

j=  l,-..,d 

V ( K , . . . , K d )  is called the mixed volume of K 1 , " ' , K d .  It is multilinear, 

continuous, nonnegative, and monotone with respect to the inclusion order. The 

special mixed volumes 

Wj(K)= V ( K , . . . , K , B , . . . , B ) ,  j = O ,  1 , - . . , d  

d'--j j 

are called quermassintegrals. Wo(K) is V(K) ,  d • WI(K) is the surface area of K, 

W,~(K) = Wo(B) is V(B) .  We use the abbreviation Kd = V(B) .  

Now, for fixed K , . . . , K d  ~ES~, V(.,K~,... ,Kd_~) is a continuous, 

monotone, linear functional on ~ and, by the isomorphism of ~ and ~(~) ,  on 

~(~) .  The vector space Le(iq), generated by ~(ft) ,  is dense in (~(~). One can 

show that V( . ,  K~, . . . ,  Kd-~) is continuous on Le(fl); hence it can be extended to 

a unique, continuous, monotone, linear functional on ~(fl). Such a functional 

corresponds to a measure p. E ~+(f~). We write d .p. --/z(K~,. .- ,  Kd-~;" ) and 

have 
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a. O')=fo f ( x ) tZ (K l , " ' ,Ka- , ;dx )  for all 
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f e  

In particular, we get 

V ( K , , . . . ,  Kd) = d-'  ( 
jn 

HK~ (x)lx(K,," " ", Kd-,; dx) 

for all K I , . . . , K ~ E X .  g ( K l , . . - , K d _ t ; . )  is called the mixed surface area 

measure of K I , . . - ,  Kd-,, and the measure 

/zj(K; . )=  g ( K , ~ ,  B , . . . ,  B ; .), j = 0 , 1 , . . . , d -  1, 

j d - l - j  

is called the j-th order  surface area measure of K E ~r. Because /.td-l(K; f~)= 

d .  W~(K) is the surface area of K, the notation is reasonable. /~o(K;.)= 

ga - l (B; ' ) ,  the ( d -  1)-th order surface area measure of B, is the Lebesgue 

measure on (fL ~ ) .  We denote  it by A. 

A line segment s is a one-dimensional convex body, s -- {ay + (1 - a ) y ' ] 0 ~  

a ~ 1} with y , y ' E  E d. s belongs to X if y = - y'. A zonotope P E :~ is a sum 

P = sl + • • • + s, with line segments s~ E ~.  We have 

H p ( u ) = f n  I ( x , u ) I o ( d x ) , u E E  d, 

for a unique measure p E ~+(l~) supported by a finite number of points. A 

zonoid K E )/" is a limit of zonotopes. Again we have 

H,,(u)= f. ](x,u)lp(dx),u~E ~, 

for a unique p E J,L(ll). A generalized zonoid K E X is a convex body such that 

there exist zonoids K~, K: E )(  with K1 = K + Kv Equivalently, 

HK(u)= fn ](X,U)IO(dx),uEE '~, 

for a unique signed measure p E d~(fl). 

2. Distributions on the sphere 

Distributions on E d are continuous linear functionals on the locally convex 

space of infinitely differentiable functions on E ~ with compact support. An 

analogous definition and development of the theory is possible if E a is replaced 
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by a ditterentiable manifold (see Schwartz [7, pp. 31-32]). Because of the 

compactness of ft, the structure of distributions on ft is simpler than in the 

general theory. On the other hand, methods which depend on the vector space 

structure of E ~, such as convolution, are not immediately transferable to ~ .  A 

development of such techniques for distributions on ~ as well as a first 

application of distribution theory to convex bodies is given by Berg [1]. We 

introduce now the function spaces which will be used and the most important 

facts about  distributions which are presumed in the next chapters. 

For simplicity, functions on ft are regarded just as functions on E ~, positively 

homogeneous of degree one. Differentiability on ft then corresponds to ditteren- 

tiability on Ed/{0}. This clarifies the meaning of partial derivatives in what 

follows. 

For m E {0, 1, 2 , . .  -} let ~,, (ft) be the vector space of all m-times continuously 

differentiable real functions f on I~. If p = ( p , . .  ",pd), pi ~ {0,1, 2, . . -}, is a 

multi-index with I P ] --- P~ + ' "  " + pd, we set 

cglPlf 
O'/(X ) = O (X ')" . . . .  a (x a )," (x ). 

We equip ~,~ (~) with the normable topology generated by the finite family of 

semi-norms 

{q, I qPot)= maxl oP;r(x) l, I p l _  -< m}. 
x E f l  

We set ~ ( f t ) =  n7,=o ~,, (l~), where ~ ( f t )  carries the projective topology. The 

spaces ~(f t ) ,  ~, , (f t )  are defined as those subspaces of ~( f t ) ,  ~, , (f t )  which 

consist of all even functions. We have ~o(l~) = q~(l~). Marking the dual space by 

a prime, we call the elements of ~ ' ( f t )  distributions on I~ and the elements of 

@'(I~) distributions of order -< m. The compactness of ft implies that all 

distributions on f~ are of finite order, that is 

0 
h' l=O 

For a function f on f~, let f* be defined by f * (x )  = [ ( -  x), x E ft. We call a 

distribution T E ~ ' ( l l )  even if TOt)= TOt*) for all [ E ~(f t ) .  The dual spaces 

~ ' ( ~ ) , ~ ' ( f t )  are identified with the subspaces of even distributions in 

~ ' ( f t ) ,  ~ ' ( f~) .  In particular we have ~ ( f ~ )  = .//(ft). Hence, for p E .//(f~) and 

f E c~(ll), we shall sometimes use pO t) instead of f n f ( x ) p ( d x ) .  If in the sequel a 
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topology on ~ '(f l)  or ~ ' ( f l )  is needed, we always take the strong topology 

unless otherwise stated. 

For natural numbers n, let 

fl" = f i x  . . - x f  

n 

be the Cartesian product and let 

= ® . . .  ® 
1 

h 

be the tensor product, where ~(f l )  is any space of functions on f .  The tensor 

product of distributions T I , " . ,  T, is denoted by T~ ® . - .  ® T, and 

T " = T ® . . . ® T .  

We have T I ® "  "® 7', E ~'(fl"),  if each T~ ~ ~'(I~). Distributions in ~ ( f )  are 

signed measures/z. The tensor product/x~ ® .  • • ®/~, is then the usual (signed) 
product measure. 

Finally, we will introduce a function space on fl which is especially important 

in the context of our investivations. Let ~ ( f )  be the space of all functions f on l'l 

such that there is a signed measure Pr ~ A/(f)  with 

f(u) = f ,  I(x, u)lpr(dx), u CO. 

We call Pr the generating signed measure, according to the similar notation for 

support functions f (see [9]). If K U ~r is a generalized zonoid, we shall write pK 
instead of pnK. Blaschke's result gives us 

~(~) C ~( f )  C ~¢ (f). 

Schneider's calculations [5] imply moreover 

~+2(fl)C~(fl) for d even, 

~j+3(f l)C~(fl)  for d odd. 

If ~ ' ( f )  is equipped with the topology of weak convergence of the generating 

signed measures, then ~ '(f)  is isomorphic to M (f ) ,  carrying the weak topology, 

and the embeddings just mentioned are all continuous. 



Vol. 24, 1976 CONVEX BODIES 359 

3. The correspondence between centrally symmetric convex bodies 
and distributions 

We assign now, to each convex body K E $6 a distribution TK ~ ~'(II) .  We 

shall see that, by this representation, the cone X becomes isomorphic to a cone 

of distributions. The proof of this isomorphism and the investigation of the 

occurring distributions are the contents of this chapter. 

THEOREM 3.1. For each K ~ ~r, the real functional TK, defined on ~(f l)  by 

Tr(f) = pt(HK), 

is in @'(f)). We call T~< the generating distribution of K. 

PROOF. ~'(l'~) (q ~ ( ~ )  is dense in W(I~) (in the topology of W(I~)). Hence, for 

K E ~,  there exist Ki E ~, i = 1, 2 , . . . ,  converging to K and with H•, E ~'(f~). 

Using the fact ~( f~)C ~'(f~) and Fubini's theorem, we get for the generating 

signed measures p~. and for all f ~  @(f~): 

pK,(f) = f~ f(u)pK,(du)= f~ fa ,{x,u},p,(dx)p~,(du) 

= fn f ,  , (x ,u} ,pr ,(du)p,(dx)= f~ H,:.(x)pt(dx) 

= p:(H~,). 

For i ~ oo, we have H~. ~ HK in ~ (fl), therefore pt(Hr,)--o pr(HK). This implies 

pK. (f) ~ T,, Or), for all f E ~ (fl). 

Then TK is the limit (in the strong topology) of the distributions pK. ~ ~ ' ( l l )  and 

hence a distribution in ~ ' ( f l )  (see [7, p. 74]). Q.E.D. 

Wese t  J : K ~  TK, K E t Y ,  and 3"~={TKIKGY/ ' } .  

THEOREM 3.2. 3-Y/" is a closed convex cone in 9'(11). 
3:  ~ ~ 3 ~  is an algebraical and topological isomorphism. 

PROOF. ~- is obviously a linear mapping on ~/: 

T.K+~r,(f) = pr(H.K+.K') = a#t(Hr) + ~pt(HK') 

= aTK (f) + [3Tr,(f), f ~ ~ (ll), a, [3 >= O, K, K' e 5~. 
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Therefore, the image fYf  of the convex cone ~ is a convex cone. Next f f  is one- 

to-one because T~ = Tr, implies 

thus, 

pI(HK) = pt(HK,) for all f E ~(lI) ,  

p(HK) = p(HK,) for all p E M([I). 

This yields HK = HK,, and K = K'.  

f is continuous because K~ ~ K, K~, K E Y(, implies HK, ---> HK and, therefore, 

pt(HK,)---->pr(HK),fE ~(II) .  Hence, TK,---> T~ in ~ ' (f l ) .  Finally, we show that 

the inverse f - ' :  T K -  K is continuous. Suppose TK E flY{ is the limit of a 

sequence T,c. ~ ~ry{, i = 1 ,2 , . .  • . Hence, T~,(/)---> TK0 r) for all f E  ~(f l ) .  Using 

the definition of TK.(f), we get the convergence of pr(HK,), as i--->~, for all 

f E ~(l-l). Because 

f(u) = 

is in ~ (~ ) ,  provided h E 

for all h E ~ (~) .  Taking x, 

f I(x,u)lh(x)A(dx),u 
(fl), we derive the convergence of 

fn HK,(u)h(u)A(du) 

E K~ and h =-1, we have 

Because of 

f. I<x,.u>lA(du)  f. 

f l<x,,u>IA(du)=2K.-,llx, II. 

the x, and hence the bodies K~, are bounded. Blaschke's selection theorem [3, p. 

34] implies the existence of a converging subsequence K~,. If K '  is the limit of K~,, 
j --> ~, we get 

f HK.(u)h(u)A(du)=f, HK(u)h(u)A(du) 

for all h ~ ~(f l ) .  Hence, we have /-irK, = HK, which implies K ' =  K. Thus, we 

have shown, that K~ converges to K and ff-~ is continuous. 

As a consequence, f y {  is closed, and the theorem is proved. Q.E.D. 
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The following theorem gives us some more information about frYE. We show 

that all generating distributions are continuous with respect to the topology 

defined on ~(I I )  by ~(II). Hence, they can be extended to elements of ~'(l'l), 

the dual of the completion of ~(fl).  As a consequence, we get an upper bound 

for the order of T~, K E X. 

THEOREM 3.3. We have J X  C $'(ll). 

PROOF. For f E  ~ (~ )  and K E X ,  we extend TK, setting T~(f)=p~(HK).  

Because convergence in *(f~) was defined as the weak convergence of the 

generating signed measures pt, T~ is continuous on *(f l) ,  and hence on ~(fl).  

Q.E.D. 

.COROLLARY 3.4. We have ~ry{ C~'n+2([/) for d even and ~Y[ C~'d+3(ll) for d 

odd. 

PROOF. The assertions follow immediately from the remark at the end of the 

last chapter. Q.E.D. 

The numbers d + 2 (resp. d + 3) are surely not optimal, for if f E ~d+2(ll) 

(resp. ~ +3(II)) then Pt has a continuous density with respect to the Lebesgue 

measure A. The characterization of ~'(ll), and hence ~'(fl),  is equivalent to the 

characterization of generalized zonoids (see [9]) which is unknown. 

In the next chapter we shall use the tensor product Tr, @" • • ~) TK, for natural 

n and Trj E ~ry{, j = 1 , . . . , n ,  which is a continuous linear form on the 

completion (~'" (fl)) ^ of the space ~k, ([l), supplied with the projective topology. 

We have ~ (1"1") C (~" (fl)) ^ C ~ (fl"). Instead of investigating whether a function 

f E  ~(1) n) belongs to (~'"(fl))  ̂ , we use a direct definition of the existence and 

value of the expression TK,@. . .@TK. ( f ) , fE~( I )n ) .  In what follows, 

T x , @ . . . @ T x , ( f )  is defined as the limit of pKI@'' '@pK~(f) ,  as i--*~, 

whenever this limit exists for every choice of generalized zonoids Kj E X, 

converging to Kj, as i ~ 0% ] = 1 , . . . ,  n. 

It could be easily seen that, in this sense, TT~(f) and T~ Q A " - ' ( f )  exist for 

K E  ~,  if and only if p~,(f) and pT~,~A"-~(f)  converge for each choice of 

generalized zonoids K ~ ~ X, K ~ --~ K as i --* oo. 

4. Geometric formulas 

We begin this chapter with the formula for the support function. 

THEOREM 4.1. For K E X and u ~ ~ we have 
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Hg(u) = TK(I(u,.)I). 

PROOF. We have ](u, ">1 E ~(fl), hence, in view of Theorem 3.3, TK(I(u, ">l) 

exists and equals p I<-.->l (HK) = ½ (HK (u) + H~ ( - u)) = H~c (u). Q.E.D. 

The following formulas treat the mixed volumes, the quermassintegrals, and 

the mixed surface area measures. All results are easily derived from the 

corresponding formulas for generalized zonoids which are obtained in [9]. 

We have to introduce the function D,  ECC(fl"), n = l , . . . , d .  For 

Xa, . . . ,x ,  E l  q, D , ( x l , . . . , x , )  is the absolute value of the determinant of 

x l , "  ",x, with respect to a n-dimensional subspace of E d which contains 

x~, • •., x,. We define the mapping R : M d - l ~  fl, where M d-~ is the set of linearly 

independent (d -1) - tup les  in fld-~, by taking a fixed orientation in E d and 

requiring: 

(1) R (Xl, • •., Xd-1) is orthogonal to each xj, j = 1 , . . . ,  d - 1. 

(2) (R (xl, • • ", Xd-~), Xl,'" ", Xd-1) is positively oriented. 

The mapping S: c¢(fl).__~ C¢(12d-1) is then defined by 

f (R  (Xa," ", xd-1))Ou-l(xb" ", xa-1), 
S (f)(x ~,.. -, xu_ 1) = if (x l, • • ", xd-1) E M' - I ,  

0 otherwise. 

THEOREM 4.2. For K1," • ", Kd E 9{, we have 

2 d 
V ( K 1 ,  " " ", K a )  : ~.t (Tr ,(~) . . .  (~ T,c,)(Dd). 

PROOF. For each ] ~ {1, . . . ,  d} let {K~},=1,2,... be a sequence of generalized 

zonoids converging to Kj. We have 

i V(K~, . . . ,  K d ) ~  V ( K , , . . . ,  Kn) 

and ([9], theorem 4) 

2dfo fo V(K~ ,"  ", K~) = -~. " "  Dd(X,,'" ", Xd)pr~ (dx l )""  pr~(dxd) 

2 d 
= ~.(Pri @ " "  ~ pr~)(D~). 

Thus 2d /d ! (Tr ,~  "'" @ Tr~)(D~) exists and equals V(K1, . . . ,  Kd). Q.E.D. 

In the same manner, we obtain the following theorems from [9], theorems 6 

and 3. 
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THEOREM 4.3. For K E 5( and j E {0, . . . ,  d - 1} we have 

2a-Jd " Wj (K) = [ ! Ki T~-'(D~_j ). 

THEOREM 4.4. For K1,"  ",K~-IE ~r, we have for all f ~  ~(O) 

I .  2" 
f(x )lz(K,, " ", K,_,; dx ) - (d - 1)! ( T r , ~ ' ' '  t~ Tr._,)(S(f)). 

In particular, for K E ~r, j ~ {1,.. -, d - 1}, and f E q~(ll), we have 

fn 2i+1 J f ( x ) a j ( K ;  dx)  = (d - 1)!K ~:b '(T* ® '~ ~-'-')(S(f)). 

We use Theorem 4.4 to show that the behavior of the support function Hr of a 

body K E X on a set A CO depends only on the restriction of Tr to a set 

orthogonal to A. In particular, for a set A CO, let A l be defined by 

A l = { x E t l l ( x , y ) = 0  for some y E A } .  

The restriction T I A of a distribution T E ~ ' (O) to an open set A c O  is the 

unique distribution in ~'(I~) which satisfies: T IA (f) = T(f)  for all [ E ~ (11)with 

support in A. 

THEOREM 4.5. For K E ~ and an open, connected subset A CO, there is a 
vector v ~ E d such that 

HK(u) =TKIA. ( l (u , '> l )+(u ,v>  for all u E A .  

PROOF. By theorem 5 in [8], on A, Hx is determined up to a translation by the 

values 

f f ( x ) t z (K , . .  K, Kj+,,.. Kd_,;dx) Q ~ Q ~ 

/ 

for all j E {1, . . . ,  d -  1}, all convex bodies Kj+~,... ,  K~_~, and all continuous 

functions f on O with support in A. In view of the central symmetry of K, it 

suffices to know these values for Kj÷I, .- . ,  Kd-x E ~C and all functions f ~ ~(O) 

with support in A U { -  x I x E A }. We then use Theorem 4.4 and get 

f ,  f ( x ) l z ( ~  ,K i÷" ' ' ' 'Kd- ' ;dx )  

i 

_ 2 a 
(d---1)! (Tk @ Tx , . ,@. . .  ~) Tr,_,)(S(f)). 
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But S(f) has support in (A~) ~-1 and, thus, we can restrict the distributions 

Tx, TK .... . . . ,  Try_, to A ~ without changing the value of the integral. This 

completes the proof of the theorem. Q.E.D. 

5. Characterization of zonoids 

A convex body K E ~ is a zonoid if and only if TK ~ ,/~+(1)). The latter is 

equivalent to TK(f) ----> 0 for all f _-> 0, f ~  ~(12) (see [7, p. 29]). The transposition 

of this fact into terms of mixed volumes gives our criterion for zonoids. 

For a K E ~ and u E 12 we denote by v(K, u) the (d - 1)-dimensional volume 

of the projection of K onto a hyperplane orthogonal to u. 

THEOREM 5.1. A body K E X is a zonoid if and only if 

V(K, L , , . . . ,  L,) <= V(K, L2,...,  L2) 

for all L,, L2 E ~{ which fulfill v(L,, u) <= v(L2, u) for all u E 12. 

PROOF. Suppose, first, K is a zonoid: 

HK(u) = fn ](x, u)lpK(dx), pr E .alL(12). 

Then, for i = 1, 2, 

V(K, L,, . . . ,  L,) = f 
jtl 

H,,(u)~o_,(L,; du) 

I(x, u)Ip,,(dx)~,,-,(L,; du ) 

I(x, u)I/x,-,(L, ; du)pr(dx). 

Because of v(L~, u) = ~f,] (x, u) I/z~_l(L,; du), i = 1,2, (see [5, p. 73]), we deduce 

from v(L1, u)<= v(L2, u) for all u E 12, 

V(K, L, , . . . ,  L,) = 2 ; ,  v (L,, u )p,, (dx) 

<=2Sn v(L2, u)pr(dx)= V(K, L2,'" ",L2). 

On the other hand, suppose V(K, L , , . . . ,  L,) <-_ V(K, L2 , "  ", L2) is valid for all 

L,,L2EY[ for which we have V(Ll, U)<=v(L2, u), uE12. Let f E ~ ( 1 2 )  be 
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nonnegative and consider TK(f)= pr(H~). If we write Pr as a difference of 

measures 

we get from f_-> 0 

Pf = p2 --/7)1, p, ,  192 ~ d~+(~'~), 

I(x,u)l(t,,+ x)(ax)<=fo I(x,u>l(o2+ x)(dx) 

for all u E O .  But pl+,~ and p2+)t are the ( d - 1 ) - t h  order surface area 

measures of bodies Lt, L2 E ~ ([4, p. 64]). 

Hence, 

v(Ll, u ) = ~  I(x,u)l(o,+ )t)(dx) 

<lfo =~ l(x ,u)l(p2+~)(dx)=v(L2,  u) for all u f f a  

from which we get, in view of our assumption, 

V(K, L , , . . . ,  L,) <= V(K, L2,." ", L2). 

But, 

0<- V(K, L2,.. ",L2)- V ( K , L , , . . . , L , )  

H~ (u)((02 + '~ )(du) - (p, + ,l )(du)) 

HK(u)pr(du) = TK(f). 

Thus, TK E 5/+(fl) which completes the proof. Q.E.D. 

The theorem just proven could be interpreted as follows. The order " < "  on 

the set of convex bodies, defined by: 

K < L ,  if and only if v(K,u)<=v(L,u) for all uEl"~, 

is weaker than the inclusion order: 

K_-<L, if and only if K C L + x for some x E E '~. 

Mixed volumes of convex bodies are monotone with respect to "_~ ". 
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Monotonicity of certain mixed volumes with respect to the weaker order  " < "  

should characterize subclasses of convex bodies. Our monotonicity criterion 

leads to the class of zonoids. 

We have shown in [8], theorem 4, that the monotonicity property of mixed 

volumes: 

V(L, K2, " ", K,) <= V(K, K2, " ", K,), for convex bodies 

K,L, K2, ' . . ,K,  wi thL  C K + x  f o r s o m e x  E E  d, 

can be used in reverse to characterize those pairs L, K of convex bodies which 

obey L C K + x for some x E E d. This causes us to ask whether, in a similar way, 

Theorem 5.1 could be inverted. Our final theorem states such an inversion. 

THEOREM 5.2. For convex bodies L1, L2 CE d, we have v(L~, u)<= v(L2, u) for 
all u E l), if and only if 

V(K, L , , . . . ,  L,) < V(K, L2,..., L2) 

for all zonoids K E 5{. 

PROOF. We have v(L~, u) <= v(L2, u) for all u E f~ if and only if 

fn (v(L:,u)-v(t,,u))p(du)>-_O for all p E J / . ( l q ) .  

Equivalently, 

n (V (L2, u ) -  v(L,, u))pK(du)_~ 0 for all zonoids K ~ ~.  

Then the equation 

2 fo (v(Lz, u ) -  v(L,, u))pK(du) 

= fn fn ](x'u)I(tz"-1(L2;dx)-P'"-'(L';dx))pK(du) 

fn HK(x)(tz"-'(L2; dx) -  /zn-,(L,; dx)) 

= V(K, L2, . . . ,L2)-  V(K,L , , . . . ,L , )  

proves our statement. Q.E.D. 
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